Model Selection and Assessment

CS4780/5780 – Machine Learning Fall 2013

> Thorsten Joachims Cornell University

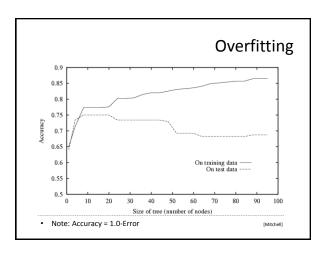
Reading: Mitchell Chapter 5

Dietterich, T. G., (1998). Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation, 10 (7)

(http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.3325)

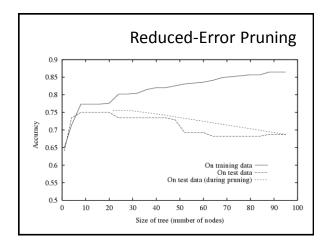
Outline

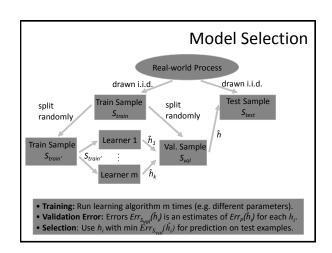
- Model Selection
 - Controlling overfitting in decision trees
 - Train, validation, test
 - K-fold cross validation
- Evaluation
 - What is the true error of classification rule h?
 - Is rule h₁ more accurate than h₂?
 - Is learning algorithm A1 better than A2?



Controlling Overfitting in Decision Trees

- Early Stopping: Stop growing the tree and introduce leaf when splitting no longer "reliable".
 - Restrict size of tree (e.g., number of nodes, depth)
 - Minimum number of examples in node
 - Threshold on splitting criterion
- · Post Pruning: Grow full tree, then simplify.
 - Reduced-error tree pruning
 - Rule post-pruning



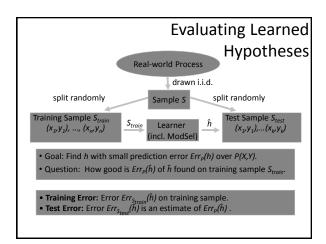


K-fold Cross Validation

- Given
 - Sample of labeled instances S
 - Learning Algorithms A
- Compute
 - Randomly partition S into k equally sized subsets $S_1 \dots S_k$
 - For *i* from 1 to *k*
 - Train A on $S_1 \dots S_{i-1} S_{i+1} \dots S_k$ and get \hat{h} .
 - Apply \hat{n} to S_i and compute $Err_{S_i}(\hat{n})$.
- Estimate
 - Average $Err_s(\hat{h})$ is estimate of average prediction error of rules produced by A, namely $E_s(Err_p(A(S_{train})))$

Text Classification Example: "Corporate Acquisitions" Results

- Unpruned Tree (ID3 Algorithm):
 - Size: 437 nodes Training Error: 0.0% Test Error: 11.0%
- · Early Stopping Tree (ID3 Algorithm):
 - Size: 299 nodes Training Error: 2.6% Test Error: 9.8%
- Reduced-Error Tree Pruning (C4.5 Algorithm):
 - Size: 167 nodes Training Error: 4.0%
- Rule Post-Pruning (C4.5 Algorithm):
 - Size: 164 tests Training Error: 3.1% Test Error: 10.3%
 - Examples of rules
 - IF vs = 1 THEN [99.4%]
 - IF vs = 0 & export = 0 & takeover = 1 THEN + [93.6%]



What is the True Error of a **Hypothesis?**

- Given
 - Sample of labeled instances S
 - Learning Algorithm A
- - Partition S randomly into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithm A on Strain, result is h.
 - Apply \hat{h} to S_{test} and compare predictions against true labels.
- Test
 - Error on test sample $Err_{S_{test}}(\hat{h})$ is estimate of true error $Err_p(\hat{h})$.
 Compute confidence interval.

Binomial Distribution

• The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

- Normal approximation: For np(1-p) >= 5 the binomial can be approximated by the normal distribution with
 - Expected value: E(X)=np Variance: Var(X)=np(1-p)
 - With probability δ , the observation \mathbf{x} falls in the interval

δ	50%	68%	80%	90%	95%	98%	99%
z_δ	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Text Classification Example: Results

- - Training Sample: 2000 examples
 - Test Sample: 600 examples
- Unpruned Tree:

- Size: 437 nodes Training Error: 0.0% Test Error: 11.0%

Early Stopping Tree:

- Size: 299 nodes Training Error: 2.6% Test Error: 9.8%

Post-Pruned Tree:

- Size: 167 nodes Training Error: 4.0% Test Error: 10.8%

Rule Post-Pruning:

- Size: 164 tests Training Error: 3.1% Test Error: 10.3%

Is Rule h₁ More Accurate than h₂? (Same Test Sample)

- Given
 - Sample of labeled instances S
 - Learning Algorithms A₁ and A₂
- Setup
 - Partition S randomly into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_{val} and compute $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$.
- Test
 - Decide, if $Err_p(\hat{h}_1) \neq Err_p(\hat{h}_2)$?
 - Null Hypothesis: $Err_{S_{lest}}(\hat{n}_1)$ and $Err_{S_{lest}}(\hat{h}_2)$ come from binomial distributions with same p.
 - → Binomial Sign Test (McNemar's Test)

Is Rule h₁ More Accurate than h₂? (Different Test Samples)

- Given
 - Samples of labeled instances S_1 and S_2
 - Learning Algorithms A₁ and A₂
- Setul
 - Partition S_1 randomly into S_{train1} (70%) and S_{test1} (30%) Partition S_2 randomly into S_{train2} (70%) and S_{test2} (30%)
 - Train learning algorithm A_1 on S_{train1} and A_2 on S_{train2} , result are \hat{n}_2 and \hat{n}_3 .
 - Apply \hat{h}_1 to S_{test1} and \hat{h}_2 to S_{test2} and get $Err_{S_{test2}}(\hat{h}_1)$ and $Err_{S_{test2}}(\hat{h}_2)$.
- Test
 - Decide, if $Err_p(\hat{h}_1) \neq Err_p(\hat{h}_2)$?
 - Null Hypothesis: $Err_{S_{test2}}(\hat{h}_1)$ and $Err_{S_{test2}}(\hat{h}_2)$ come from binomial distributions with same p.
 - → t-Test (z-Test) [→ see Mitchell book]

Is Learning Algorithm A_1 better than A_2 ?

- Given
 - -k samples $S_1 \dots S_k$ of labeled instances, all i.i.d. from P(X,Y).
 - Learning Algorithms A₁ and A₂
- Setup
 - For *i* from 1 to *k*
 - Partition S_i randomly into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_{test} and compute $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$.
- Test
 - Decide, if $E_S(Err_p(A_1(S_{train}))) \neq E_S(Err_p(A_2(S_{train})))$?
 - Null Hypothesis: $Err_{S_{test}}(A_2(S_{train}))$ and $Err_{S_{test}}(A_2(S_{train}))$ come from same distribution over samples S.
 - → t-Test (z-Test) or Wilcoxon Signed-Rank Test [→ see Mitchell book]

Approximation via K-fold Cross Validation

- Given
 - Sample of labeled instances S
 - Learning Algorithms A₁ and A₂
- Compute
 - Randomly partition S into k equally sized subsets S₁ ... S_k
 - For i from 1 to k
 - Train A_1 and A_2 on S_1 ... S_{i-1} S_{i+1} ... S_k and get \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_i and compute $Err_{S_i}(\hat{h}_1)$ and $Err_{S_i}(\hat{h}_2)$.
- Estimate
 - Average $Err_{S}(\hat{h}_1)$ is estimate of $E_S(Err_P(A_1(S_{train})))$
 - Average $Err_{S_i}(\hat{h}_2)$ is estimate of $E_S(Err_P(A_2(S_{train})))$
 - Count how often $Err_{s_i}(\hat{h}_1) > Err_{s_i}(\hat{h}_2)$ and $Err_{s_i}(\hat{h}_1) < Err_{s_i}(\hat{h}_2)$