Linear Classifiers and Perceptrons

CS4780/5780 – Machine Learning Fall 2013

Thorsten Joachims Cornell University

Reading: Mitchell Chapter 4.4-4.4.2

Example: Spam Filtering

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = -1$
$ \vec{x}_2 = ($	0	1	1	0	0)	$y_2 = +1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = -1$

- Instance Space X:
 - Feature vector of word occurrences => binary features
 - N features (N typically > 50000)
- Target Concept c:
 - Spam (-1) / Ham (+1)

Linear Classification Rules

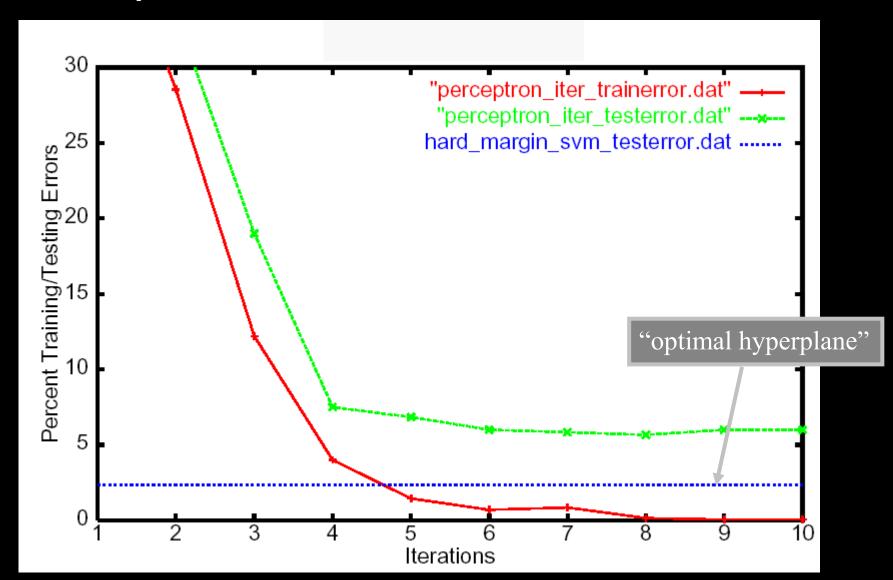
- Hypotheses of the form
 - unbiased: $h_{\overrightarrow{w}}(\overrightarrow{x}) = \begin{cases} +1 & w_1x_1 + \dots + w_Nx_N > 0 \\ -1 & else \end{cases}$
 - biased: $h_{\overrightarrow{w},b}(\vec{x}) = \begin{cases} +1 & w_1x_1 + ... + w_Nx_N + b > 0 \\ -1 & else \end{cases}$
 - Parameter vector w, scalar b
- Hypothesis space H
 - $-H_{unbiased} = \{h_{\overrightarrow{w}} : \overrightarrow{w} \in \Re^N\}$
 - $H_{biased} = \{ h_{\overrightarrow{w},b} \colon \overrightarrow{w} \in \Re^N, b \in \Re \}$
- Notation
 - $w_1 x_1 + \dots + w_N x_N = \overrightarrow{w} \cdot \overrightarrow{x} \quad \text{and} \quad sign(a) = \begin{cases} +1 & a > 0 \\ -1 & else \end{cases}$
 - $h_{\overrightarrow{w}}(\vec{x}) = sign(\overrightarrow{w} \cdot \vec{x})$
 - $-h_{\overrightarrow{w},b}(\overrightarrow{x}) = sign(\overrightarrow{w} \cdot \overrightarrow{x} + b)$

(Batch) Perceptron Algorithm

```
Input: S=((ec{x}_1,y_1),...,(ec{x}_n,y_n)), ec{x}_i\in\Re^N, y_i\in\{-1,1\}, I\in[1,2,..]
```

Algorithm:

- $\vec{w}_0 = \vec{0}$, k = 0
- repeat
 - FOR i=1 TO n
 - * IF $y_i(\vec{w_k} \cdot \vec{x_i}) \leq 0 \#\#\#$ makes mistake


$$\cdot \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$$

- $k \cdot k = k + 1$
- * ENDIF
- ENDFOR
- until I iterations reached

Training Data:

	x_1	x_2	y
$\vec{x}_1 = ($	1	2)	$y_1 = 1$
$\vec{x}_2 = ($	2	1)	$y_2 = 1$
$ \vec{x}_3 = ($	-1	-1)	$y_3 = -1$
$\vec{x}_4 = ($	-1	1)	$y_3 = -1$

Example: Reuters Text Classification

