Online Learning and Perceptron Mistake Bound

CS4780/5780 – Machine Learning Fall 2013

> Thorsten Joachims Cornell University

Reading: Mitchell Chapter 7.5 Cristianini/Shawe-Taylor Chapter 2-2.1.1

Online Learning Model

- Initialize hypothesis $h \in H$
- FOR i from 1 to infinity
 - Receive x_i
 - Make prediction $\hat{y}_i = h(x_i)$
 - Receive true label y_i
 - Record if prediction was correct (e.g., $\hat{y_i} = y_i$)
 - Update h

(Online) Perceptron Algorithm

- Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\}$
- Algorithm:
 - $\vec{w}_0 = \vec{0}, \ k = 0$
 - FOR i=1 TO n
 - * IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0 \# \# \#$ makes mistake
 - $\cdot \ \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$
 - $\cdot k = k + 1$
 - * ENDIF
 - ENDFOR
- Output: $ec{w}_k$

Perceptron Mistake Bound

Theorem: For any sequence of training examples $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)$ with $R = \max \|\vec{x}_i\|$,

if there exists a weight vector \vec{w}_{opt} with $\left\| \vec{w}_{opt} \right\| = 1$ and

 $y_i\left(\vec{w}_{opt}\cdot\vec{x}_i\right)\geq\delta$

for all $1 \leq i \leq n$, then the Perceptron makes at most

 $\frac{R^2}{\delta^2}$ errors.

Margin of a Linear Classifier

Definition: For a linear classifier h_w , the margin δ of an example (\vec{x}, y) with $\vec{x} \in \Re^N$ and $y \in \{-1, +1\}$ is $\delta = y(\vec{w} \cdot \vec{x})$.

Definition: The margin is called geometric margin, if $||\vec{w}|| = 1$. For general \vec{w} , the term functional margin is used to indicate that the norm of \vec{w} is not necessarily 1.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a sample S is $\delta = \min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x})$.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a task P(X,Y) is

 $\delta = \inf_{S \sim P(X,Y)} \min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x}).$