## **Ensemble Learning**

#### CS4780/5780 – Machine Learning Fall 2013

Igor Labutov Cornell University

### **Ensemble Learning**

A class of "meta" learning algorithms

#### A NEW YORK TIMES BUSINESS BESTSELLER

"As entertaining and thought-provoking as *The Tipping Point* by Malcolm Gladwell. . . . *The Wisdom of Crowds* ranges far and wide." —*The Boston Globe* 

# THE WISDOM OF CROWDS JAMES SUROWIECKI

WITH A NEW AFTERWORD BY THE AUTHOR



## JAMES SUROWIECKI

WITH A NEW AFTERWORD BY THE AUTHOR



The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies and Nations







## 1,198 lb 1,197 lb





#### Criteria Description

Each person should have private information Diversity of opinion even if it's just an eccentric interpretation of the known facts. Independence *People's opinions aren't determined by the* opinions of those around them. Decentralization People are able to specialize and draw on local knowledge. Aggregation

Some mechanism exists for turning private judgments into a collective decision.

### **Ensemble Learning**

A class of "meta" learning algorithms

Combining multiple classifiers to increase performance

Very effective in practice

Good theoretical guarantees

Easy to implement!

### Ensemble

**Problem** : given *T* binary classification hypotheses  $(h_1, ..., h_T)$ , **find** a combined classifier:

$$h_S(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

with better performance.

### Teaser



### Teaser



#### Why do Ensembles work?

Hypothetical Classifier with Perror=0.3

Hypothetical Classifier with Perror=0.3



Hypothetical Classifier with Perror=0.3



#### Why do Ensembles work?



## BAGGING



## Bagging

(Breiman, 1996)

#### Bagging (Boostrap aggregating).

BAGGING $(S = ((x_1, y_1), \dots, (x_m, y_m)))$ 1 for  $t \leftarrow 1$  to T do 2  $S_t \leftarrow \text{BOOTSTRAP}(S) \triangleright \text{i.i.d. sampling with replacement from } S.$ 3  $h_t \leftarrow \text{TRAINCLASSIFIER}(S_t)$ 4 return  $h_S = x \mapsto \text{MAJORITYVOTE}((h_1(x), \dots, h_T(x)))$ 

### Bagging

#### Ensemble :

$$h_S(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

**Bagging** : Special case where we fix:

$$lpha_t = 1$$
 and  $h_t = \mathbb{L}(S_t)^*$ 

\*  $\mathbb{L}$  is some learning algorithm  $S_t$  is a training set drawn from distribution P(< x, y >)

### **Bias-Variance Tradeoff**

### **Generalization Error**

Classification :

$$\epsilon_{test} = \frac{1}{n} \sum_{i}^{n} \text{Zero-One-Loss}(y_i, h(x_i))$$

Regression :  $\epsilon_{test} = \frac{1}{n} \sum_{i}^{n} (y_i - h(x_i))^2$ 









$$\bar{\epsilon}_{test}(x_i) = \frac{1}{T} \sum_{t}^{T} (y_i - h_t(x_i))^2$$

OR, as an expectation:

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right]$$

For the entire test set:

$$\mathbb{E}_{X,Y}\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right]$$

CLAIM:

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right] =$$

**bias**<sup>2</sup> 
$$(y_i - \mathbb{E}_S[h_S(x_i)])^2 +$$

variance  $+ \mathbb{E}_S[(h_s(x_i) - \mathbb{E}_S[(h_S(x_i))])^2]$ 










































$$\mathbb{E}_{S}\left[(y_{i} - h_{S}(x_{i}))^{2}\right] =$$

$$(y_{i} - \mathbb{E}_{S}[h_{S}(x_{i})])^{2} +$$

$$+ \mathbb{E}_{S}[(h_{s}(x_{i}) - \mathbb{E}_{S}[(h_{S}(x_{i}))])^{2}]$$

## Label Noise

Noise-free:

$$y_i = f(x_i)$$

**Regression:** 

$$y_i = f(x_i) + noise$$
  
$$y_i = f(x_i) + \mathcal{N}(0, \sigma^2)$$

Classification:

$$y_i = noisy(f(x_i))$$

( *noisy()* switches label with probability *p* )

$$y = \mathrm{noisy}(f(x))$$
 (flip sign with probability 0.25)









Example (kNN)

#### Democrat vs Republican party association



# K=1





























number of Chinese characters

CLAIM:

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right] =$$

**bias**<sup>2</sup> 
$$(y_i - \mathbb{E}_S[h_S(x_i)])^2 +$$

variance  $+ \mathbb{E}_S[(h_s(x_i) - \mathbb{E}_S[(h_S(x_i))])^2]$ 

### **USEFUL LEMMA:**

# $\mathbb{E}[(\alpha - \mathbb{E}[\alpha])^2] = \mathbb{E}[\alpha^2] + \mathbb{E}[\alpha]^2$

$$y_i = f(x_i) + \mathcal{N}(0, \sigma^2)$$

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right] =$$

**bias**<sup>2</sup> 
$$(y_i - \mathbb{E}_S[h_S(x_i)])^2 +$$

variance  $+ \mathbb{E}_S[(h_s(x_i) - \mathbb{E}_S[(h_S(x_i))])^2]$
$$y_i = f(x_i) + \mathcal{N}(0, \sigma^2)$$

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right] =$$

**bias**<sup>2</sup> 
$$(f(x_i) - \mathbb{E}_S[h_S(x_i)])^2 +$$

variance  $+ \mathbb{E}_S[(h_s(x_i) - \mathbb{E}_S[(h_S(x_i))])^2]$ 

noise  $+ \mathbb{E}_S[(f(x_i) - y_i)^2]$ 

$$y_i = f(x_i) + \mathcal{N}(0, \sigma^2)$$

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right] =$$

**bias**<sup>2</sup> 
$$(f(x_i) - \mathbb{E}_S[h_S(x_i)])^2 +$$

variance  $+ \mathbb{E}_S[(h_s(x_i) - \mathbb{E}_S[(h_S(x_i))])^2]$ 

noise  $+ \sigma^2$ 

$$\mathbb{E}_{S}\left[(y_{i} - h_{S}(x_{i}))^{2}\right] =$$
bias<sup>2</sup>

$$(y_{i} - \mathbb{E}_{S}[h_{S}(x_{i})])^{2} +$$
variance
$$+ \mathbb{E}_{S}[(h_{s}(x_{i}) - \mathbb{E}_{S}[(h_{S}(x_{i}))])^{2}]$$

### BAGGING revisited



(Breiman, 1996)

#### Bagging (Boostrap aggregating).

```
BAGGING(S = ((x_1, y_1), \dots, (x_m, y_m)))

1 for t \leftarrow 1 to T do

2 S_t \leftarrow \text{BOOTSTRAP}(S) \triangleright \text{i.i.d. sampling with replacement from } S.

3 h_t \leftarrow \text{TRAINCLASSIFIER}(S_t)

4 return h_S = x \mapsto \text{MAJORITYVOTE}((h_1(x), \dots, h_T(x)))
```

# Why does it work?

#### Ensemble :

$$h_S(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

**Bagging** : Special case where we fix:

$$lpha_t = 1$$
 and  $h_t = \mathbb{L}(S_t)^*$ 

\*  $\mathbb{L}$  is some learning algorithm  $S_t$  is a training set drawn from distribution P(< x, y >)

Bagging Ensemble :

$$h_S(x) = \operatorname{sign}\left(\sum_{t=1}^T h_t(x)\right)$$

What happens to *bias* and *variance*?

Bagging Ensemble (regression):



What happens to *bias* and *variance*?

 $\operatorname{Bias}(h_s, x_i) =$ 

 $\operatorname{Var}(h_s, x_i) \approx$ 

Bagging has approximately the same bias, but reduces variance of individual classifiers!















### Ensemble

**Problem** : given *T* binary classification hypotheses  $(h_1, ..., h_T)$ , **find** a combined classifier:

$$h_S(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

with better performance.

### Teaser

