Ensemble Learning

CS4780/5780 – Machine Learning Fall 2013

Igor Labutov Cornell University

Ensemble Learning

A class of "meta" learning algorithms

A NEW YORK TIMES BUSINESS BESTSELLER

"As entertaining and thought-provoking as *The Tipping Point* by Malcolm Gladwell. . . . *The Wisdom of Crowds* ranges far and wide." —*The Boston Globe*

THE WISDOM OF CROWDS JAMES SUROWIECKI

WITH A NEW AFTERWORD BY THE AUTHOR

JAMES SUROWIECKI

WITH A NEW AFTERWORD BY THE AUTHOR

The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies and Nations

1,198 lb 1,197 lb

Criteria Description

Each person should have private information Diversity of opinion even if it's just an eccentric interpretation of the known facts. Independence *People's opinions aren't determined by the* opinions of those around them. Decentralization People are able to specialize and draw on local knowledge. Aggregation

Some mechanism exists for turning private judgments into a collective decision.

Ensemble Learning

A class of "meta" learning algorithms

Combining multiple classifiers to increase performance

Very effective in practice

Good theoretical guarantees

Easy to implement!

Ensemble

Problem : given *T* binary classification hypotheses $(h_1, ..., h_T)$, **find** a combined classifier:

$$h_S(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

with better performance.

Teaser

Teaser

Why do Ensembles work?

Hypothetical Classifier with Perror=0.3

Hypothetical Classifier with Perror=0.3

Hypothetical Classifier with Perror=0.3

Why do Ensembles work?

BAGGING

Bagging

(Breiman, 1996)

Bagging (Boostrap aggregating).

BAGGING $(S = ((x_1, y_1), \dots, (x_m, y_m)))$ 1 for $t \leftarrow 1$ to T do 2 $S_t \leftarrow \text{BOOTSTRAP}(S) \triangleright \text{i.i.d. sampling with replacement from } S.$ 3 $h_t \leftarrow \text{TRAINCLASSIFIER}(S_t)$ 4 return $h_S = x \mapsto \text{MAJORITYVOTE}((h_1(x), \dots, h_T(x)))$

Bagging

Ensemble :

$$h_S(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

Bagging : Special case where we fix:

$$lpha_t = 1$$
 and $h_t = \mathbb{L}(S_t)^*$

* \mathbb{L} is some learning algorithm S_t is a training set drawn from distribution P(< x, y >)

Bias-Variance Tradeoff

Generalization Error

Classification :

$$\epsilon_{test} = \frac{1}{n} \sum_{i}^{n} \text{Zero-One-Loss}(y_i, h(x_i))$$

Regression : $\epsilon_{test} = \frac{1}{n} \sum_{i}^{n} (y_i - h(x_i))^2$

$$\bar{\epsilon}_{test}(x_i) = \frac{1}{T} \sum_{t}^{T} (y_i - h_t(x_i))^2$$

OR, as an expectation:

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right]$$

For the entire test set:

$$\mathbb{E}_{X,Y}\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right]$$

CLAIM:

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right] =$$

bias²
$$(y_i - \mathbb{E}_S[h_S(x_i)])^2 +$$

variance $+ \mathbb{E}_S[(h_s(x_i) - \mathbb{E}_S[(h_S(x_i))])^2]$

$$\mathbb{E}_{S}\left[(y_{i} - h_{S}(x_{i}))^{2}\right] =$$

$$(y_{i} - \mathbb{E}_{S}[h_{S}(x_{i})])^{2} +$$

$$+ \mathbb{E}_{S}[(h_{s}(x_{i}) - \mathbb{E}_{S}[(h_{S}(x_{i}))])^{2}]$$

Label Noise

Noise-free:

$$y_i = f(x_i)$$

Regression:

$$y_i = f(x_i) + noise$$

$$y_i = f(x_i) + \mathcal{N}(0, \sigma^2)$$

Classification:

$$y_i = noisy(f(x_i))$$

(*noisy()* switches label with probability *p*)

$$y = \mathrm{noisy}(f(x))$$
 (flip sign with probability 0.25)

Example (kNN)

Democrat vs Republican party association

K=1

number of Chinese characters

CLAIM:

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right] =$$

bias²
$$(y_i - \mathbb{E}_S[h_S(x_i)])^2 +$$

variance $+ \mathbb{E}_S[(h_s(x_i) - \mathbb{E}_S[(h_S(x_i))])^2]$

USEFUL LEMMA:

$\mathbb{E}[(\alpha - \mathbb{E}[\alpha])^2] = \mathbb{E}[\alpha^2] + \mathbb{E}[\alpha]^2$

$$y_i = f(x_i) + \mathcal{N}(0, \sigma^2)$$

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right] =$$

bias²
$$(y_i - \mathbb{E}_S[h_S(x_i)])^2 +$$

variance $+ \mathbb{E}_S[(h_s(x_i) - \mathbb{E}_S[(h_S(x_i))])^2]$
$$y_i = f(x_i) + \mathcal{N}(0, \sigma^2)$$

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right] =$$

bias²
$$(f(x_i) - \mathbb{E}_S[h_S(x_i)])^2 +$$

variance $+ \mathbb{E}_S[(h_s(x_i) - \mathbb{E}_S[(h_S(x_i))])^2]$

noise $+ \mathbb{E}_S[(f(x_i) - y_i)^2]$

$$y_i = f(x_i) + \mathcal{N}(0, \sigma^2)$$

$$\mathbb{E}_S\left[(y_i - h_S(x_i))^2\right] =$$

bias²
$$(f(x_i) - \mathbb{E}_S[h_S(x_i)])^2 +$$

variance $+ \mathbb{E}_S[(h_s(x_i) - \mathbb{E}_S[(h_S(x_i))])^2]$

noise $+ \sigma^2$

$$\mathbb{E}_{S}\left[(y_{i} - h_{S}(x_{i}))^{2}\right] =$$
bias²

$$(y_{i} - \mathbb{E}_{S}[h_{S}(x_{i})])^{2} +$$
variance
$$+ \mathbb{E}_{S}[(h_{s}(x_{i}) - \mathbb{E}_{S}[(h_{S}(x_{i}))])^{2}]$$

BAGGING revisited

(Breiman, 1996)

Bagging (Boostrap aggregating).

```
BAGGING(S = ((x_1, y_1), \dots, (x_m, y_m)))

1 for t \leftarrow 1 to T do

2 S_t \leftarrow \text{BOOTSTRAP}(S) \triangleright \text{i.i.d. sampling with replacement from } S.

3 h_t \leftarrow \text{TRAINCLASSIFIER}(S_t)

4 return h_S = x \mapsto \text{MAJORITYVOTE}((h_1(x), \dots, h_T(x)))
```

Why does it work?

Ensemble :

$$h_S(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

Bagging : Special case where we fix:

$$lpha_t = 1$$
 and $h_t = \mathbb{L}(S_t)^*$

* \mathbb{L} is some learning algorithm S_t is a training set drawn from distribution P(< x, y >)

Bagging Ensemble :

$$h_S(x) = \operatorname{sign}\left(\sum_{t=1}^T h_t(x)\right)$$

What happens to *bias* and *variance*?

Bagging Ensemble (regression):

What happens to *bias* and *variance*?

 $\operatorname{Bias}(h_s, x_i) =$

 $\operatorname{Var}(h_s, x_i) \approx$

Bagging has approximately the same bias, but reduces variance of individual classifiers!

Ensemble

Problem : given *T* binary classification hypotheses $(h_1, ..., h_T)$, **find** a combined classifier:

$$h_S(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$$

with better performance.

Teaser

