Clustering: K-Means and Mixtures of Gaussians

CS4780/5780 – Machine Learning Fall 2013

> Thorsten Joachims Cornell University

Reading: Manning/Raghavan/Schuetze, Chapters 16 (not 16.3) and 17 (http://nlp.stanford.edu/IR-book/)

Outline

- · Supervised vs. Unsupervised Learning
- · Hierarchical Clustering
 - Hierarchical Agglomerative Clustering (HAC)
- Non-Hierarchical Clustering
 - K-means
 - Mixtures of Gaussians and EM-Algorithm

Non-Hierarchical Clustering

- K-means clustering ("hard")
- Mixtures of Gaussians and training via Expectation maximization Algorithm ("soft")

Clustering Criterion

- Evaluation function that assigns a (usually real-valued) value to a clustering
 - Clustering criterion typically function of
 - · within-cluster similarity and
 - between-cluster dissimilarity
- Optimization
 - Find clustering that maximizes the criterion
 - Global optimization (often intractable)
 - · Greedy search
 - Approximation algorithms

Centroid-Based Clustering

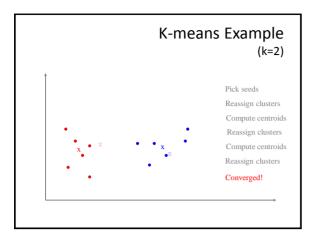
- · Assumes instances are real-valued vectors.
- Clusters represented via centroids (i.e. average of points in a cluster) c:

 $\vec{\mu}(c) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$

 Reassignment of instances to clusters is based on distance to the current cluster centroids.

K-Means Algorithm

- Input: k = number of clusters, distance measure d
- Select k random instances $\{s_1, s_2, \dots s_k\}$ as seeds.
- Until clustering converges or other stopping criterion:
 - For each instance x_i :
 - Assign x_i to the cluster c_i such that $d(x_i, s_i)$ is min.
 - For each cluster c_i //update the centroid of each cluster
 - $s_i = \mu(c_i)$



Time Complexity

- Assume computing distance between two instances is O(N) where N is the dimensionality of the vectors.
- Reassigning clusters for n points: O(kn) distance computations, or O(knN).
- Computing centroids: Each instance gets added once to some centroid: O(nN).
- Assume these two steps are each done once for i iterations: O(iknN).
- Linear in all relevant factors, assuming a fixed number of iterations, more efficient than HAC.

Buckshot Algorithm

Problem

- Results can vary based on random seed selection, especially for high-dimensional data.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.

Idea: Combine HAC and K-means clustering.

- First randomly take a sample of instances of size
- Run group-average HAC on this sample n1/2
- Use the results of HAC as initial seeds for K-means.
- Overall algorithm is efficient and avoids problems of bad seed selection.

Clustering as Prediction

- Setup
 - Learning Task: P(X)
 - Training Sample: $S = (\vec{x}_1, ..., \vec{x}_n)$
 - Hypothesis Space: $H = \{h_1, ..., h_{|H|}\}$ each describes $P(X|h_i)$ where h_i are parameters
 - Goal: learn which $P(X|h_i)$ produces the data
- What to predict?
 - Predict where new points are going to fall

Gaussian Mixtures and EM

- · Gaussian Mixture Models
 - Assume

$$P(X = \vec{x}|h_i) = \sum_{j=1}^{k} P(X = \vec{x}|Y = j, h_i)P(Y = j)$$

where $P(X = \vec{x}|Y = j, h) = N(X = \vec{x}|\vec{\mu}_j, \Sigma_j)$ and $h = (\vec{\mu}_1, ..., \vec{\mu}_k, \Sigma_1, ..., \Sigma_k)$.

and $n = (\mu_1, \dots, \mu_k, \Sigma_1, \dots$

- EM Algorithm
 - Assume P(Y) and k known and $\Sigma_i = 1$.
 - REPEAT
 - $\vec{\mu}_j = \frac{\sum_{i=1}^{n} P(Y=j|X=\vec{x}_i, \vec{\mu}_1, ..., \vec{\mu}_k)\vec{x}_i}{\sum_{i=1}^{n} P(Y=j|X=\vec{x}_i, \vec{\mu}_1, ..., \vec{\mu}_k)}$

 $\bullet \ \ P(Y=j|X=\vec{x}_i,\vec{\mu}_1,\dots,\vec{\mu}_k) = \frac{P(X=\vec{x}_i|Y=j,\vec{\mu}_i)P(Y=j)}{\sum_{k=1}^k P(X=\vec{x}_i|Y=l,\vec{\mu}_i)P(Y=j)} = \frac{e^{-0.5\left[\vec{x}_i-\vec{\mu}_i\right]^2}P(Y=j)}{\sum_{k=1}^k e^{-0.5\left(\vec{x}_i-\vec{\mu}_i\right)^2}P(Y=j)}$